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The study of cross-relaxation effects in paramagnetic c rys ta l s  

is of grea t  intrinsic in te res t  to mil l imeter  wave m a s e r  technology 

because of the possibility of obtaining m a s e r  amplification a t  higher 

frequency than that of the pump source .  In this thesis  the quantum 

mechanical calculation of c ross  relaxation r a t e s ,  the r a t e  equation 

analysis of the m a s e r ,  and the experimental  measurement  of c r o s s -  

relaxation ra tes  a r e  presented. I t  was shown that in  mater ia l s  

such as ruby o r  emera ld  the cross-relaxation rate is not sufficiently 

strong to be pract ical  to build a m a s e r  with i t s  signal frequency much 

l a r g e r  than its pump frequency. However, cross-relaxat ion processes  

could hinder o r  assist m a s e r  amplification in  a given m a s e r  amplif ier .  

iii 



I '  

Ths study of relaxation effects in  paramagnetic crystals  is 

carr ied on by maqy wrkers because of its great  i n t r i n s i c  interest 

and its importance t o  maser technologg. Until l958 it was thought 

t h a t  tbre were only two k3.h of relaxation processes in these 

crystab, namely the spin-spin and spin-latt ice processes character 

iaed by the relaxation times T2 and T1 respectively. 

Bloambergen and hia coworkers' demonstrated t h a t ,  under certain 

conditions, tenus in the dipols-dipole interaction Hamiltonian 

which may be disregarded in the canputation of T2 nay lead t o  a 

In 1958 

2 

new and important relaxation effect  which they called cross relax- 

ation. This process is characterized by a r ebxa t ion  t h e  T whose 21 
magnitude, for cases w h e r e  cross relaxation processes are p w s i c a l l y  

important, lies in the range T2 L, TZ1 < T1. The lower Umit on T 

corresponds t o  the  fact that T2 is the f a s t e s t  possible spin-spin 
2 1  

interact ion time and cross relaxation is the result of a spin-spin 

interact ion process. The u p p r  l i m i t  results &am the fact t h a t  if 

> T the effects of cross relaxation w i l l  be masked by those of 
T21 1 
the spin- la t t ice  relaxation. 

As a simple example of a cross relaxation process let us con- 

siddr the s i tuat ion shown in Figure 1 where Ma = qaeKDC < hfb 8 

g b : b b ( g i  a the spectroscopic s#litting factor,  Q i s  the ~ o h r  

1 
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magneton and is the applied steady m a s e t i c  f ie ld) .  S&h a 

si tuat ion could arise from two different  paramagnetic ions each with 

spin s = 1 /2  but with different spectroscopic s p l i t t i n g  factors  

being subst i tut ional ly  added into the  same diamagnetic host crystal .  - 

If 'b fa 8 f& i s  very small, i.a., if the  two pairs of l eve ls  

have a lmost the  same energy spacing, a possible cross relaxation 

process between the a and b species is one in which one p spin 

makes a ms il +1 transi t ion uhile simultaneously a h spin makes 

a 

by the t o t a l  dipolar or internal  energy o f t  he spin system. 

can w r i t e  the  Hamiltonian f o r  t h i s  system as 

4 ms = -1 transit ion.  TIB excess energy hf& w i ~  be taken up 

We 

is the Zeeman energy in the appl ied f i e l d  in the general case. For 

our special  case we haye 

la' ) I4 m9,af+ 7; (3 d k  

and r is the radius vector connecting the  i - th  and j- th spins. -ij 



Equation l b  can be rewrit ten as  

2 )  I&,,+ = fi+i3+ C *b-+c t- F 

W h e r e  

where S+l and Smi are the  spin  ra i s ing  and lowering operators 

and $ ij  are the polar angles of zij wi th  respect respectively and 8 

t o  the coordinate axes. 

13 

we can t r e a t  H as a int 
If we take the usual case of Ii ’> H 

mag int ’ 
The cross relaxation probabili ty f o r  the case under perturbation. 

discussion is 1 

3 ) .  w,, 
is a normalized d is t r ibu t ion  function that, in where g 

essence, gives the  probabili ty that  the  t o t a l  dipole-dipole 
ab (*abb) 

interact ion can absorb the energy hfab not accounted fo r  tq the  

double spin f l i p  alone. This function, usually called the  l i ne  

shape function, has i ts  m a x h u m  value when f 

of gab (fab) is discussed in chapter 11. 

- 0. The computation 
ab - 
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We note t h a t  not all of the terms of Hint given i n  R u t i o n  2 

give rise t o  the desired spin f l i p  process. In f a c t  only the B 
* 

(equation 2b) does SO. This is an example of the rule  that we 

use only those tenns giwn by Equation 2( or possibly combinations 

of those tenns) i n  our €Sht which give rise t o  the part icular  cross 

relaxation t ransi t ions of interest 

It is an interest ing h is tor ica l  f a c t  that the very first so l id  

s t a t e  mlcFowave maser ut i l ized the above ty-pe of cross relaxation 

process although it was not recognized as suchm3 The operation of 

t h i s  maser, whose active ionwas  gadolinium, depended upon the fad 

t ha t ,  at the  maser operating point, the f'requency difference between 

the two energy levels of a second rare earth impurity ion in the 

crystal ,  cerium, was approximately equal t o  the  frequency of the idler 

t r ans i t i on  in the  a ct ive ion. Thus cross relaxation between the two 

t rans i t ions  could take place. This gave r i s e  t o  a new relaxation path 

for t h e  idler t rans i t ion  and because T < T the 
2 1  l , c e r i m <  T1,idler 

effect ive relaxation time of the idler t rans i t ion  was shortened enough 

so that maser action could occur. 

Another possible cross relaxation s i tua t ion  is shown i n  Figure lb. 

Here again we have two s p c i e s  of paramagnetic ions but i n  this cas2 

The cross relaxation process f o r  t h i s  case will be we have 2f I fb* 

two a spins making Ams I + 1 transi t ions while one b spin makes a 

A m  0 1 t ransi t ion.  

a 

- - 
This is an example of harmonic cross relaxation. 

8 



For Hint i n  this case we must use combinations of the te rns  given in 

muations 2 e.g., BC. 

If, by ap::lying a strong radio fraquency s igna l  at the  frequency 

fa, we saturate t h e  f 

the ms I + lf2 and ms = -I42 l eve ls  of t h e  a ions, it i s  svident that, 

due t o  the  coilpling of tha a and b ions v i a  the  c r0 . s  relaxation processs 

the fb  t ransi t ion w i l l  tend t o  saturate t o  a degree dependent upon the 

st rength of the  cross r ebxa t ion  coupling. 

s a twx t ion  which is  of great importance i n  masr  work. 

t r zns i t i on  i.e., equalize the  populations of 
a 

- 
- - 

This is an example of cross 

As an example of t h i s  bnportance we note that by using ruby as 

the active material and excluding consideration of cross relaxation, 

it should be possible t o  make Gband (around &0Cknc.) masers that operate 

a t  low magnetic fields (250-500 gauss) or a t  higher f ie lds  (around 

2000 gauss)! I n  practice,  however, the l a w  f ield maser operation is 

be t t e r  than expected . 
behavior was  qrster ious,  after its discovery t h e  mystay '..as easily 

cleared up. I n  the  la; f i e l d  case cross saturat ion effects tend t o  

minimize the population inversion of t h e  signal t r ans i t i on  thus re- 

d u c i x  the-maser effect; while in the high f i e l d  case cross saturat ion 

ac t s  t o  increase the  population inversibn thus enhancing the maser 

effect has shown that ,  by sui table  modification of the  low 

f i e l d  maser operating point, cross relaxation can be made t o  work  t o  

the  advantage of maser operation thus making low f i e l d  h x m d  maser 

operation feasible. 

4 Before the discovery of cross relaxation t h i s  

4 B Bogle 
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The energy level diagram i l l u s t r a t ed  in Figure IC is'that of 

an ion with a spin S :: 3/2 8.g. chranium (@), placed in a magretic 

field whose magnitude and direction with respect t o  the  magnetic 

canpbx axes gives rise to a s p l i t t i n g  of the energy levels such t h a t  

mfJ2 z fu. The s i tua t ion  shown here may lead t o  the operation of 

a maser with a signal frequency higher than the pump frequency for 

i f w  e saturate the f 

t rans i t ion  probabili ty is large enough, the f 

became at l ea s t  partially saturated thus  giving rise to the  possi- 

b i l i t y  of population inversion at the frequency f 

f31, and each of these frequencies is larger  than the pump frequency f 

The essent ia l  difference between the maser operation described above and 

transit ion,  and if the cross relaxation 
32 

t r a n s i t i o n w i l l  13 

OT at the frequency 42 

32' 

the  conventional three level maser where  the s i g n a l f  requency is always 

less than the pump frequency lies in  the  effective multiplication of 

the pump frequency by the factor  m through the  cross saturation effect .  

kams has succeeded i n  obtaining maser adion at a signal frequency of 

10,590 mc. with a pump frequency of 9595 mc. using the  above configuration. 

5 

It is desirable for  many purposes to  have a low noise continuous 

wave amplifier such as a maser that  W i l l  operate i n  the millimeter wave- 

length region. 

why we cannot successfully operate a conventional maser in t h i s  region. 

Sowever, when we remember that f o r  optimum resu l t s  a conventional maser 

should have a pump freouency at l e a s t  of the  order of twice the signal 

If we have a suit3ble pump source there is no recson 

7 



frequency, a glance a t  various manufacturerst catalogs shms that as 

we go higher in frequency the number of tubes t h a t  are su i tab le  as 

pump sourceswith regard t o  frequency, power and, in many cases, 

price. 

frequency above 75 Ymc. 

frequencies there arc no comnnercially available sources. 

desirable t o  be able t o  operate a maser using a pmp source whose 

frequency i I mch lower than the  desired signal frequency. 

seen that by u t i l i z ing  cross rel,2;;ation it i s  theoret ical ly  possible 

t o  do th i s .  

feas ib i l i ty  of building maser devices ~siiik; cross relaxation e f fec ts  

t o  obtain high signal  t o  pump frequency rat ios .  

This is part icular ly  trme if we want t o  operate a maser a t  a 

Indeed, we may f5ncl that f o r  c e r t a i i  

This it is 

Ye have 

The main purpos~ of this  thesis  w i l l  be t o  assess the 

We shall discuss i n  Chapter IL the calculation of the cross 

relaxation t rans i t ion  probability indicat ins  the usefullness of the 

calculation, the d i f f i cu l t i e s  involved and what we  car^ l e a r n  from it 

with regard t o  the  nag;nitude of T2,. and i ts  dependence upon ths  concen- 

t r a t i c n  of paramagnetic ions, t he  s t a t e  functions of t h e  energy levels  

involved i n  the process, the  harrnonic number m etc.  

together with a r a t e  squation analysis of  the ra te  of change of the 

populations of the energy levels,  we shall discuss i n  Chapter IL!: 

the  f eas ib i l i t y  of the proposed maszr device p a r t i c u l z l y  with 

s igna l  frequency t o  the pump frequency. 

the discussion of same expeiimental resu l t s  re la t ing  t o  cross 

r e  laxat ion. 

Using these resul ts ,  

Chapter N w i l l  be devoted t o  

8 
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E?y nay of introduction t o  the  probl of calculating the moss 

relaxation t r ans i t i on  probabi l i t r  wcT, l e t  us  Z i r s t  look in to  the 

calculation of the induced absorption between two levels  in  a para- 

magnetic system. To keep things simple l e t  us assume a system with 

t o t a l  s p i n  S 1 / 2  where the  nuclear magnetic moment is wro .  

spin Hamiltonian f o r  such a system is 

The 

when 

quantum numbers ms = - l/2 (&beled 1 )  f o r  the lower level and ms = +1/2 

1H&, t h i s  system w i l l  consist  of two energy levels  with sp in  

(labeled 2) f o r  the upper levsl. The map-iitude of t he  s p l i t t i n g  is 

If we apply a microwave s ignal  of frequency fZ1 t o  the system, 

t h e  induced radiat ive t rans i t ion  r a t e  is given by 

w h e r e  H is th amplitude of the applied radio frequency magnetic field 

whose direct ion is assumed t o  be para l l e l  t o  the x-axis, and g ( f )  is the 

nonnalized lineshape function. 

X 

9 



The calculation of the  Katrix element i n  !\Il2 is elementary. 

The calculation of the lineshape function is f a r  &om elementary; 

i n  f ac t ,  no p rac t i ca l  way has ever Seen found t o  calculate g ( f )  

d i r ec t ly  i n  any r e a l i s t i c  wse .  

g(f) is that of the  method of moments 2'6'70 

The standard method f o r  computing 

The n ' t h  moment of g ( f )  

is defined as 

A method for  calculating the moments is  as follows. ht 

(sx)nn' be the matrib element connectin; the single pa.rt icle s t a t e s  

n and n'. Then the  normalized second moment is given by 

where  fnnd- - (d,- Hh*) / h and H i s  L5ven by Equation 4. 
V a n  Vleck 2 pointed out t h a t  t h i s  expression can be rewrLtLen 

as 

where T r  stands f o r t h e  t race o r  diagonal sum. 

The process can be extended t o  higher moments. For instance, 

the fourth moment is given by 

I 

1 
where U = HSx -Sx H. 

10 
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I n  general, the 2k’th moment is  Ziven by 

Not2 that i n  the above paragraph no mention is made of the odd 

order m o m e n t s .  This is because we have made w h a t  is hown a s the  

%nfinits temperature” approxination. As shown by Pryce and Stevens 8 , 
it turns out that when we expand the manents as a function of 

temperature the hading terms of the even moments a re  independent of 

the temperature whereas the leading terms of the odd moments con- 

tains the  fac tor  hf/kt (k  is Boltnann’s constant and T is the 

temperature in degrees Kelvin). 

case throughout most of the microwave region even a t  4%, we may 

neglect the odd moments as canpared t o  the even ones. When we are 

working with millimeter wavelength energy se-,arations at helium 

temperatures this approxination breaks dotm, but. we shall continue 

t o  use it on the grounds that the first moment has l i t t l e  e f f ec t  on 

the l ine  width but merely displaces the line from i ts  room temperature 

As long as  hf/kt e< 1, which is the 

posit ion and t h a t  the whole calculation becomes even more d i f f i c u l t  if 

we take the first moment in to  account 
* 

Even after this simplification we are s t i l l  faced with the problem 

of finding a closed expression f o r  g ( f )  given all the even moments. 

it For purther information on his subject see Pryce and Stevens 8 
and McMillan and Opechowski B 
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T h i s  problem is  complicated by the f a c t  that, as we shall hee i n  d e t a i l  

later, t h e  d i f f icu l ty  in calculating the  manents increases very rapidly 

with t h e i r  order so t ha t  i n  practice most calculations are  not carried 

beyond the fourth moment and, indeed, the four th  moment i t s e l f  is i n  

rnw cases only estimated. Vhat is often done is t o  choose a 

Gaussian or Lorenteian lineshape and use it. The choice between tnem 

is sametimes made on the  basis of computational convenience, L e .  

the Gaussian shape is chosen, i n  the absence of other data. Of 

couse,  i n  some cases the  lirieshape function i s  known a pr ior i .  

In  other cases the goodness of fit between t h e  experimental l ine- 

shape and the  assumed lineshape can be tes ted by comparing the 

various moments. One suc3 comparison that is commonly used is  t o  

compare t h e  ratio of the fourth moment t o  the square of t he  second 

moment for both cases. 

more information about the  wings of the line and less about the center, 

i n  t he  absence of infonnation about moments higher than the fourth, 

a l l  we can say, even when the  r a t i o  test  shows a good f i t ,  is that  we 

have a reasonable knowledge of the center of t he  l i n e  but do not know 

Since the higher moments give progressively 

very much about what goes on in t h e  wings. 

Now l e t  us return t o  the calculation. &om equations 2 and 4 we 

have 

1 

I 

I 



I '  . 

where ue have taken the magnetic f i e l d  t o  be in the z direction, 

is clear that if we omit the  t e n s  of Quat ion 12 enclosed by the 

braces S, t 2 S 
hsnce will be a constant of the motion. 

for Sx, A ms 2 1 wiU be rigorously obeyed. The terms i n  the  

braces have selection rules b ms I + 1, -2 and when added t o  the 

first part of Equation 12 will give additional select ion rules 

for the t o t a l  Hamiltonian of A ms 
transitions a t  frequencies d fr: 0, 2g P €$dh and 3g Q BDc/h 
respectively. We are interested only in the l i n e  a t  f = g Q€I,,& 

( 4 ms I + 1) and so we must eliminate the terms i n  the braces 

from the Hamiltonian when calculating the moments of this l i n e  since 

they give rise t o  new l i nes  rather than t o  a broadening of the l ine 

of interest. The inclusion of these s a t e l l i t e  l i nes  i n  the  can- 

p a t i o n  of the  manents would lead t o  erroneously large values of 

tg m(1lpBTlts because, even though the i r  intensi ty  is low, the 

s a t e l l i t e  Unes would count heavily i n  the computation due t o  the  

f ac t  t ha t  t h e i r  weighting factors, the frequency separation fram 

the center of the l i ne  of M e r e s t ,  is so large. 

t i o n  12 outside the braces constitute the truncated Hamiltonian which 

i s  t o  be used f o r  this problem 

It 

w i l l  cemmte with the remaining terms of H and 
c zi 

Thus the selection rule 

- 

0, 2 2, 2 3 corresponding to  

- 

The terms of Equa- 

2 

13 



We note that we could have arrived a t  the same Hamiltonian 

by taking the one ion energy term, i n  t h i s  case the Zeeman term, 

and adding t o  it those terns  of Hint which commute with it. 

The r e s t  of the calculation is straightforward but tedious and 

since we have no i n t r i n s i c  i n t e re s t  i n  the spin 1 / 2  case we w i l l  

drop it a t  t h i s  point". 

The extension of the above method t o  the case of a system with 

a spin 3.2 where a crystal l ine e l e c t r i c  f ield is present w a s  made 

by Ishiguro, Kambe and Usuil0. A n  example of such a system is ruby 
x 

3f , r? A\, 03) . The one ion energy term is ( C r  

where 5 = 312 . 

Since i n  ruby gllW $ and iD1=- D = s , we can m i t e  the one ion 

term as 

where we have taken the magnetic f i e l d  t o  be pa ra l l e l  t o  the c-axis 

of the crystal  which is also the z-axis of tie magnetic conplex 

coordinate system. 

since i t  does not contribute t o  the s p l i t t i n g  of the energy levels. 

We have also dropped the constant tern1 

The t o t a l  Hamiltonian including interactions between the  ions is 

2 
i+ For further detai ls  see V a n  Vleck 

u 



The radiative t ransi t ion p robab i l i t j  for AMS:% ( tra&itions, 

where the microwave f i e l d  is i n  the x direction,& given by 

which is Equation 6 with an obvious modification. 

The canputation of the matrix element is straightforward 

because, due t o  our choice of & p a r a l l e l  t o  the  c-axis, each level 

is a single pure spin s ta te .  

parallel t o  t h e  c-axis, L e .  the polar angles 8 and of 

with respect t o  the  c-axis are not zero, and the wave function far 

each energy level is a m i x t u r e  of pure spin states w h i c h  must be 

I n  the  g e n e r a  case -. is not 

calculated and hence makes the matrix element camputation much more 

diff i d t  

The calculation of t h e  second moment proceeds according t o  the  

"reciperl given i n  Equation 9 but as in the  spin S= 1 / 2  case, and for 

the same reason, we m u s t  use the appropriate truncated Hamiltonian. 

The Hamiltonian is found by taking the one-ion energy term and adding 

t o  it those terms of 

be 

. 

Hint which c m u t e  w i t h  it. T h i s  turns out t o  



operators corresponding t o  the s t a t e s  m 

of the i l t h  ion respectively. 

- 3/2,1/2-1/2 and -3/2 s i  

The use of the projection operxtors i s  t o  ensure tha t  we take 

up only 

nations of bMs: f' I 
t o t a l  energy b u t  merely serve t o  broaden thi! resonance l ine.  

I t rans i t ions  and i n  addition only those combi- 

t rans i t ions  wt-iich have no net ef fec t  on the  

The above method f o r  computing the maments of g ( f )  is some- 

times termed the Van Vleck approach. It has the vFrtue of sim- 

p l i c i t y  as campared t o  other approaches wheri used on the sivple 

physical si tuations described above. It appears t o  be completely 

adequate i n  the  handling of systems where no c rys ta l l ine  f i e l d  i s  

is  pa ra l l e l  t o  

The extension o f  t h i s  method t o  cases where a crystal-  
%C present or  when we operate i n  such a manner that 

the  z-=is. 

l i n e  f ie ld  i s  present and. I! 

at all obvious. The main stumbling block ar i ses  from t h e  f a c t  t h a t  i n  

t h i s  case the one-ion e n e r a  term i s  given by Equation 13 and includes 

both Sx and S 

terms of  Hint which comrcute w i t h  dquation 13 is fa r  from t r i v i a l .  

much more systematic and elegant treatment is needed. 

one i s  availakle, baszd on the vork of Pryce and Stevens', which 

i s  not p a r a d l e l  t o  the z-axis i s  not -DC 

terms in  addition t o  the  S, term. To pick out those 
Y 

d 

Fortunately 

uses projection operator techniques throughout. 

used by klinkowski t o  calculate the cross relaxation t rans i t ion  

This teclmique as 
11 
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. 

I 
1 

r a t e  w i l l  be discussed l o t m  3n. 

t a t ions  of ths  method, it i ~ l l  pay us t o  look a t  the extension of t h e  

V a n  Vleck approach t o  the cross relzxation case as done 6- Hirone 

who was the f i rs t  t o  maka a ca lcv la t ion  cf the cross r e l a x a t i o n  

e f fec t  in  2 substance havinf a crystal l ine e l e c t r i c  field. 

B u t  f i r s t  , realizyhf: the .  lb5- 

12 

To i l l u s t r a t e  3'irone's WOrkJ l e t  us take f o r  an example one 

of the system he used, namely ruby w i t h  the one-ion spin  ;iamiltonian 

L i v e r ,  by Equation 1b where j&&f( see Figure 2). Let us look a t  

the upper three energy levels. 'de note that 

so that a possible cross r e l z a t i o n  xocess  among these levels  is one 

i n  which three ions (i,2,k}, i n i t i a l l y  i n  the levels  ms= 3/2, -1/2, 

and 3/2 respectively, make transit ions s o  that they are  finally in 

t he  1eveI.s ms t 142, 1/2J an6 1/2 respectively. Xith tte setup as 

shown i.e,8=$'q the stz ts  f'unction for  each energy level is  a 

single pure spin s t a t e  s o  that the above l eve l  assignments can be 

mn?e unambimously. 

servin_ because of Zquation 19. 

The prccess described is obviouskj enerrvr con- 

T h e  probability of  t h e  indicstzd sp7h f l i p  process is  ,iven by 
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Tho computetion of t h c  i ~ a t r L ~  element i n  t h i s  

conplicat=d t h a n  that ir? th5 case of the rs::i&Ax-c 

probability becausd B ( i j k )  is 2 combination of 
int 

case i s  pore 

trans it ion 

t en t s  of 

Equaiion 2 r s the r  thai: Jus t  5 . 
such tems  of + a t i o n  2 ui-ich rives riseto the desire2 process 

i s  the  product of 3 ant? 3 i r i t h  >Trroyri.ztE relettsr!n: of t h s  sub- 

scr ip ts .  

The lotrcst order combinztion of 
X 

LettLnC n t  &not9 a? 'nterm5iFt:: s t a t ? ,  TE have 

where zkt ( i j k )  is one 0:- th.;- f cc to r s  of 1:- 

is the other, mc! Z. cnci 3 

intermediate states r e c F  ctively. 

( i j i )  md. X&,( i jk)  ht 
the  onergies of the i n i t i a l  and 

1 n1 

Aquation 20 corresGoxk t o  szcond orcler perturb?.ticn theor,.. 

?&tin,- h(fsL- q&&bE WG ner f  c n ~  Lnh the  s a  over t hc inter-  

m d i a t e  states, notin:; t h a t  ai-Lher t h z  i; or  2, process cc.n occur first 

a d  thzt the ions i,:, and  iC ixst Le n a x  each other i n  order t o  have 

an appreciable intei-:.ction, :ic cax hirite 

ion being i n  thc 

the  :>roj:.ctior? operal.or cori,espondinE t o  ?-.he i ' t h  

stz.te RS = ?Ig, 

19 



Including the reci.7roca.l process, we can write 

giv;n by Equation 22 is  complicated by t he  f a c t  that E 

Aij3 the exchange ener,ry, which may or  may not be known, Fnd because 

the terms R e t c  involve s - n s  over l a t t i c e  parameters. The 

accuracy of the l a t t i c e  sums will usually depend on the  amolir,t of 

computer time avai lable  . 

includes 
ij 

\h 

i j 

-It 

The method used by Yorono f o r  the c a l c c l a t i m  of the  l ine- 

shape f a c t o r  g ( f )  follows from t h e  work of Ishiguro e t  a1 
10 . ;‘or 

the  Hamiltonian 5 i n  t he  f o r r d a  f o r  the second moment gilden by 

Quat ion  9 we are  t o  use the &.rnlltonian Piven by Ecuatlon 1 7  which 

i s  constructed by taking the  one-ion energy tsmi and acding t o  it 

these f i rs t  order terms of .-lint which comnute i i t h  it. 

of s 

I n  place 

we a r c  t o  use I ! ~ ~ ~  (ij’tc) as :;i-:ren in  Xcuation 22 .  
x 

Gsing ar. i n t e r r a l  approxiination t o  the l a t t i c e  s m s  which 

assumes the  exchange eiler y t o  be ~ e g l i ~ : i b l e ,  Hirono f inds  t h e  

second moment t o  be of t h -  fom 
\ ,L L -,> ,I 

* Hirono12 gives a very approxfmatc method of evaluatfng- the 
l a t t i c e  sums by rieans of  an  intecrzt ion f o r  t h e  ca,cs rii- 0. 

Hirono does not actual ly  give the f o m  of t h e  second t e z m  nor  
the value of For th? case S 3 / 2  but we car, i n f e r  both from 
h i s  discussion of a s imllar  cross re laxat ion process j n  an S=l 
system. 

20 
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where and 32 a re  numerical ccnztrnts which dif'er ty less 
z z 

than an order of macnitude, 8:i is an average of S;i (with &jzb) 

over a sFhere centered a t  the  i ' t h  icn, z is t he  effect ive number 

of nearest neighbor paramametic ions and f is the concentrFtion 

of such ions. Since I n  most maser mter ia l s  p"0.u , t h e  second 

term can be neglected compersd t o  the  first, thus making the 

second moment concentrttion independent . 

* 

The fourth moment may 'be computed from 

-<eglecting terms involvingf , Hirono gives the  fourth moment as 

If the  lineshape were Caussian the  r a t i o  of the fourth moment 

t o  the square of the secondwould be exactly three. 

ge ts  2 =er we see that a Gaussian shape, which is 

Since Firono 

is a reasonable approximation t o  g ( f ) .  

we  havs used a s l i gh t ly  d i f fe ren t  notation fron t h a t  
of Hirono. !!is B i s  six times ours.  In  our case %= 7.0Y2. 

21 
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The above c a l c a l a t i o n  sulfcrr ,  from t h L  sarr,e d i f  f i c u l t - i e s  
10 

t h a t  t h e  ca lcu la t ion  of Iskig-uro e t  a1 , on which it i s  ' casx l ,  

s u f f e r s  frcm, namely p t v e  d i ' f i cu l t i e s  a n  e rxountered v :im 

'IDc and the z - a i s  of t h  magnetic comnlex are not. : a r a l l e l .  

The r o o t  of t h e s e  d i f f i c u l t i e s  lis.- i n  t h e  f a c t  that i n  t h e  non- 

p a r a l l e l  case the on::-ion energy t?mL conta ins  

as S, so  that t o  serarate mt thoFe terms o f  Ii: 

w i t h  t h e  on?-ion t e r n  becones exceedin;;ly d i f l i c u l t .  I n  the 

p a r a l l e l  case t h i s  is  easy beczuze then the  one-ion term contains  

only S . Another cons idera t ion  i s  that i n  t he  non-para l le l  case,  

except a t  magnetic f i e l d s  t o o  hi5h t o  be u s e f u l  f o r  maser operat ion,  

and S as w e l l  

which comnute 
"X B 

i n t  

z 

t h e  s k t e  func t ions  of the  ind iv idua l  ene r iy  levels w i l l  no longer  

be pure s p i n  states. 

s t a t e s  anc the conbinin;: c o e f f i c i e n t s  h i l l  be  f m c t i o n s  of Fi 

This s i t u a t i o n  caq be included i n  Firono 's  c a l m l a t i o n  bu t  not  

Instead they t r i l l  be combinations of  p r e  s 2 i n  

aandq. 
3 C '  

without some messy nota t ion .  So i f  ve wish t o make c a l c d a t i o n s  o!' 

t h e  cross  r e l axa t ion  t r m s i t i o n  ? r o b a b i l i t y  i n  tho most :. ene ra l ,  

and n o s t  comon, case, the  non-para l le l  case,  we shoul  lcok for  a more 

e l e r a n t  approach than  t h a t  based on t h  work of  'Jan V k c k .  Such an 

11 approach is that of Xinkowski 

c and Stevens . I n  t h e  fol iowine 

c a l c c l a t  ion. 

whose work i s  based on 

?ages hie s h a l l  o u t l i n e  

that  of Pryce 

;..inkowski 1s 
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Neglectin: Fntersctions 'zetween ions,  th2 t o t a l  spin Hamiltonian 

of a system of  I',r parasa:-netic ions dihted i n t o  a diamaFnetic host 

N c r y s t a l  is  

22) fi*= t /io; 
c = I  

where €Ioi 

Also 

is  t h e  one ion  energ; term, 

where I hiri > i s  t h s  r t t h  eigens+?.te of the i ' t h  ion  ( referred 

t o  by i$inkowski as a s - ~ i n  s t a t e )  and E,; is th- corres2onding 

energy. If thz ion has t o t a l  s p b  S, there  are 2.5 +1 ?ossible 

ekenstates fo r  eac:? ion. IJe also have 

whereIA)is an eig- 2nstatc 01. thki t o t a l  spin Haniltonim (referred 

t o  by I5nkaJski as a systsx s t a t e )  and E 

energy, 

i s  the  corresponding 
0 

I n  terms of g u m t i t i e s  associated x i th  individual Lons (spins),  

la) has the fomd 

and 
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L5+ I 
where fsr i s  the  population of t he  r ' t h  spin state and E! = f 

. t-rl 
nrm 

There are  

orthogonal spin staters with energy E,. 

A specif ic  set of nr Is, denotsd by n, gives rise t o  a 
1 I'  

degenerate manifold 1 of s ta t5s id th  an ener&y 2 A projection 0' 

operator on t h i s  manifold is P which can be wri t ten as the  sum c\ 

of projections on the s t a t e s  spanrLng the  manifold. 

The t o t a l  sp in  Hzsiiltonian of the system, includinL the interact ion 

between spins i s  

3 5 )  H=u, +H,t;t. 

As was noted i n  a previous discussion, Hint,c broadens the 

and H comUt.e, they can be s h u l -  
0 

energy levels.. Since Hint 

tanemsly diagonal izzd by a l i n e a r  combination of *productt1 s t a t e s  
YC 

o f t h e  form given i n  Equation 31. 

order system s t a t e s  and are  denoted by IC>. 
belonging t o  the manifold are denoted by I y). The projection 

operator on the  r manifold, ? , can be wr i t ten  as 

These s t a t e s  are the correct zero- 

The rtproductlJ s t a t e s  

rl 

2h 
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which i s  a sum over the correct zero-order s ta tes .  Freviously we 

wrote it  as  

which i s  a sum over "product" s ta tes .  Both forms ar,: e q u d l y  valid. 

The part  of H which does not com ute  w i t h  H is 
C int 

This is  the part t ha t  gives rise t o  cross relaxation e f fec ts  and 

w i l l  be t rezted as a perturbation which causes t r m s i t i o n s  Setween 

the  correct zero-order states. 

To f i rs t  order, the energy of the I 1 manifold is, using the  

correct zero-order system states J G)  , 

In the absence of l i ne  broadening, radiat ive t rans i t ions  will 

occur between two s t a t e s  of the manifolds 

where f is the frequency of the applied radiofrecuency f ie ld .  

Cross relaxation tr.  nsitions will occur when 

25 



The l e s t  et2uation holds  bncaus.., i n  t h ?  absence of l i ne  broad- 

e n b  , cross relaxation t r sns i t ions  ,lust ce'nsirve energy exactl:;. 

\hen l ine  broadenin: i s  presznt,  th? c r i t e r i a  become 

40 9 

and 

419 

I n  the  crse  of Equation LO anci 1 3  we knox the  lineshape is a 

s function while i n  thg? cas-  of Zqcations LO' and 41' it must be 

computed . 
Tne cross relaxation t rans i t ion  pro'cability is 

whera 0 is  tha t  part o f  !4int,,,7p which gives r ise  t o  the cross 

re laxat ion t ransi t ions of in te res t .  

a. t k e e  sp in  Frocess s w h  ns Tras t'.13 czse .'escri'ced ~YJ Ilirono, 0 

.i ., 
I t '  the process of iqterest is  

w i l l  be a three spin operator and w i l l  have the- f o m  

, '  
where C c ) # l < ,  

For an n sp in  process, 0 will obviously be an n-spin operator. 

iv.e n a e  t h a t  the  radiat ive t rnns i t ion  probabili ty is- also 

of t h e  form o f  nquation L2 except that in that case 0 will be a one 

spin operator e.g. o;asp;. Thus we see t h a t  both radiat ive and 

cross rElaxation t rans i t ions  can be t rea ted  5n a uniform manna-. 
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I '  

Since an operator such as Oijk operates on the  three spins 

k, j, and k and only on these spins, w e  can write 

where r,s,t,=Ih[Yh:dh$etc and the  unprimed states a r e  i n  

t he  p manifold while the primud stat:?s a re  in the A manifold. 

The o p e r a t o r 2 D r ) K  comects a l l  permutations of r s. tk t o  all 

permutztions of ri s i  t Only sane of these pennutations a re  

distinguishable e.g. we saw i n  discussing Hirono's work that a 

LJK) i J  

L k' 

possible cross relaxation i3rocess resulted in  a l l  three ions Winding 

up i n  the ms I + l/2 state so that i n  the present notation r(,sl 

and t1 will be ident ical  and hence there w i l l  be only one 

distin,@shable pernutation of the parameters. 

account o f t h i s  by rewriting !quation kb as 

I4inkowski takes 

where  6cr's'e) is the sumation over t he  distinguishabl- permu= 

ta t ions  of rls't ' and 111 ( r s t ) :  is the number of indistinguishable 

pennutations of rst. 

we note that i n  general <+P:, sJ # s;.kdt,=t: . If we 

t r y  t o  compute the na t r ix  element i n  q u a t i o n  45 usinf first order 

perturbation theory we w i l l  always get z':ro fo r  an answer since in 

first order t h e o v  w e  can w r i i e  0 = Hij + Hjk + Hik where each 
i jk 

27 



of the terms operates on only two spins  while t he  s t a t e  functions 

involve three spins so t h a t  a typ ica l  term of the computation w i l l  

order perturbation theory. I n  general, f o r  an m spin cross relax- 

a t ion  process we must use (m-1)  order perturbation t heory. 

I n  the simplest three s p i i  process, s e e  Figure 3, r '  = s t =  t ' 

and r I s f  t. Thus Xijk becomes 

v 
Following Kittel  and Abrahns13 we can convert 5 
t r a r i l y  choosing an origin,  t o  

, by arbi- 
q 1 4  

where M is the t o t a l  number of abailable sites, N i s  the t o t a l  

number of paramaznetic ions and f =  M/K. 

Thus for a three sp ic  process w e  nay write 

defined in Equation &. 
with 'ijk 

The lineshape function i s  acain ca-lculated using t h s  method of 

The first s t ep  i s  t o  calculate t he  area of the l i n 2  moments. 

because we wishto work with normalized moments. I€ IG) and 1 c) 
20 
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are  correct zero-order system s t a t e s  of the manifolds 

respectively, the area i s  definsd as 

and/\ 

which can be mwrit ten as 

Using Equation 34 we cen express the area i n  terms of projections 

over the  ttproductll system states as 

As before, we are  interested only i n  t rans i t ions  between 

distinguishable pernutations i.8. physically d i f f e ren t  configurations, 

of t he  i n i t i a l  and f i n a l  s ta tes .  

operitor 
To t h i s  and w e  define the projection 



I 

Where (6 ( r s t )  is the sum over distinguishable permutations of 

rst and pr is the  projection operator which picks out the r ' t h  

state of the i ' t h  ion. Thus we have 
i 

In converting the f t o  the sum 2 we xust again intro- 
')) >K q rcf 

duce the fac tor  m(rst)l ,  the number of indistinguishable permu- 

ta t ions of r a t .  R n a l l ~  we have 

We note t h a t  the  t race in Equation 53 is  to be cmputed in the 

configuration space of N spins but 0 

figuration space of three spins. 

operates only i n  the  con- is k 
Hence we can write 

where F(O 

t r ace  operator indicates the dimensionality of the space over 

which the t race is t o  be computed and I is the  ident i ty  operator. 

;vou 

) is some function of 0 
i j k  i jk '  

the  s u p e s c r i p t  Over the 



Thus 

Putting Equation 56 i n t o  Equation 5 3  and using Equations 48 and 59 

we get 

with Kijk given by Lquation 45. 

The unnormalized second mment f o r  any t r ans i t i on  line can be 

writ ten as 

whelre-in the last equation, the second f ac to r  i s  the  adjoint of t he  

f i rs t  

I 

We wish t o  se l ec t  i n  3quPtion 62 only those s t a t e s  \A,.;\) 

within the  4 
To do t h i s ,  we introduce thc select ion operator P 

manifolc' which are connected by the terms of H 
i j  

uv 
which ij 
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operates within the I\ manifold. We can thus write 

Thus Bquatian 60 becanes 

where the subscript 3 indicates a three spin process. 

After taking account of a l l  the conditions on the indices 

ijklm and abcde in Equation 64 which ensure that, in general, 

M Y )  is non-vanishing (see UnkowaM for the details) we get 

and 
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The normalized second moment is  thus 

Since in ordinary maser materials f is of the order of 18, 

we can neglect thi? second term i? Aquation 68 compared t o  thc first 

and thus we see that both ,?:inkowski and Hirono f ind  the  noimalized. 

second moment t o  be concentration independent. 

jus t i f ica t ion ,  which we w i l l  not go into,  I.':inkowski f inds that thL? 

leading term i n  all of the higher nornialized moments is  a l s o  conccn- 

t i a t i o n  independent. 

independent 

Using a heu r i s t i c  

Thus we may t a k s  f ( f )  t o  be concentration 

Remembering that an m-spin cross relaxation process requires 

(m-l)'th order perturbation theory, i/Lnkowski approximates the  

area sum by 

where g is the spectroscopic s p l i t t i n g  fzctor,  p is t h e  Bohr 

magneton, d is a measure of the distance betwesn spins (of t he  

order of l a t t i c e  dimensions) and 

energy levels. 

- 
is  an averagc spacin:, between 

He similarly approximtes the unnomalixec? second 

moment sum as 
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Thus the noxmalized second mnent is  civlsii by 

which is independent of  t h e  order of the  process. Using th? values 

d .I 4.9 and g n2 and assumin2 the concentration low enouchs o that 

only the concentrdiion independent term of t h e  second moment is 

s ignif icant ,  we find that,  t2ssuming a Gaussian lineshape, tb le 4 2  

l i n w i d t h  f o r  any order cross relaxation process is of the  order 

of 550 mc. 

- 

C 2 n  

72 1 

At the center of the line, i f  we assume a Gaussian shape, we 

ayproximate the  cross relaxation time f o r  an m-spin process as 

which, i n  the paramagnetic region, is always kss  than one. 

T h a t  the above aporoxhation a re  extremely 1-ough ones can be seen 

most readily by re fer r ing  t o  IYnkowskils own experimental evidence. 

Xis energy leve l  setup is  i l lus t ra t3d  i n  Figure 4. 

point was chosen so that f13 : f24 and 2f23 = fZl =f3h 

The operating 
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I n  ths  

a t  H 
DC 

strong 

crystal he used, C 3+ in K3 ( C O ( G N ) ~ ,  t h i s  s i tuat ion occurs 

= 735 gauss, # = 7 / 2 ,  ana 8 

saturating s i , a l  a t  f = f 
13 24 

r 
499501 By applying a 

he was able t o  redirce the 

large number of possible cross relaxation processes t o  only two 

34 s igr i f ican t  ones, 2fZ3 s fpl (the - a process) and 2f23 = 

speed we 11 and T21,b (the - b process). H i s  calculation of T21,a 

wi th  his expez-imental re:ults. 
- - 

:!owever h is  r e su l t s  do not bear out 

the roughapproximations made Zbove i n  that the a process has a hzlf- 

width of 116 mc while thr  b process has a half-width of 5% mc, 

- 
- 

T h e  intensi ty  at  the center of tt? line of the a Frocess i s  a? roxi- 

mately three times that of the b process. 

only order of magnitude validity. 

- 
Thus the approxjmatlons have - 

Xe also see t h a t  the on& essent ia l  

difference between tha a and b processes l ies i n  the d i f fe ren t  s t a t e  -~ - 
functions involved, and so we may s F f 7 l . y  assume tha t  thLs is 

responsible for the different value,  of T for t h e  two processes. 
2 1  

To summarize w h a t  can be lezrnecl fram the quantum mechanical 

calculation of Tpl, we can say t ha t  f o r  an ni-spin process the t o t a l  

concentration depndence, which is f In-’, is  contained in th: matrix 

elements; t ha t  the lineshape function is, f o r t h e  usual values 

concentrxtion independent; that t he  value of T 

upon the s t a t e  functions of t he  enerGy levels involved in the 

O f f 2  

depends c r i t i c a l l y  21 

process; and that ,  t o  within a numerical fac tor  probably less t b m  

ten, the linewidth i s  independent of t.he order of the process. Per- 

haps the most important thing we have leprned is that, if we  ha^ 
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the  value of the  exchange in t eg ra l  or, bn t t e r  yet, neglect it, it is 

possible t o  perform 2 reasonably r e l i ab le  order of n a p i t u d e  calcu- 

lation, albeit a long and tedious one, of the cross  re laxa t ion  

t r a n s i t  ion probability. 
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In order t o  describe the e f fec ts  of cross relaxation on the 

population of tbe various spin energy levels,  we need a s e t  of equa- 

t ions  which inclucie all relaxation a d  drivin, force terms. 

an equation is 

Such 

where n is  the population of the L -th leve l  and the  subscripts 

S-L, rf and c r  re fer to  spin-lattice, radiofrequency dr ivinc force 

and cross r e h a t i o n  e f fec ts  respectively. 

The spin-latt ice tern is  given by 

i 

where w ij is the spin-lattice t rans i t ion  probability. A t  thermal 

equilibrium, if  w;' is the only t r a s i t i o n  causing agency present, 

we have 
5 

where Xi is 

this case a 

77) N; - =  

ths them1 equilibrium population of the i - t h  level. In 
Boltzmann dis t r ibut ion w i l l  prevai l  among the N 3 s and t h s  

- Mj /K-r 
e 0' 
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and 

where T i s  the absolute temperature of the l a t t i c e  (assumed t o  be the 

same as  that  of  the  both). 

Throughout t h i s  chapter we shall nake use of  t he  usual high 

terqserature approximation mL-4 KI. Using this we m a y  w r i t e  

and 

The approximation holds  a t  h e l i m  temperatur-es throughout the 

centimeter wavelength r e e o n  but  breaks down in the millimeter region.  

In  s p i t e  of' t h i s ,  and evm though we are  primarily interested i n  the  

millimeter region, we us8 the  approximation because carrying through 

AL,, --.-.--.-A- -1 
ulie expuiiaribius adds l i t t l e  t o  our  understanding while greatly 

complicating the solution of t he  r a t e  equations. 

The driving force term may be writ ten as 

.. 
') 

where wr+ i s  the radiat ive t rans i t ion  probability. 
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In the  l a s t  chapter we com;out& for a three spLn cross relaxation 

process the quantity 

which is the cross relaxation t rans i t ion  probability. 

this fits in to  b_lliqLblet us look a t  the: si tuat ion shown i n  Figure 5 

where 2f 

that three neighbor'lng ions w i l l  make t rans i t ions  such tha t  nl* 

n1 +2, n2*% -3 and n3+ n + 1. To find the  t o t z l  number of 

processes per second a t  t ine  t tha5, say, rEinove three ions from 

l eve l  2, we m u s t  multipQ Urn by the probabili ty of findinc the 

three ions in h - e l  2 which is (h2/l:) . 
there are three ions a t  the s i t e s  of i n t e re s t  is already included 

To see how 

at 
i n  t h i s  case Uc,, will give u s  the probability I2 = f23 

3 

3 The probability tha t  

i n  Equation 81. 

the nuiiber of ions lesvin- level two ?er  seconr! a t  time t due t o  

cross relaxation e f f e c t s  i s  

Since each process removes three ions froia level  2, 

I 

W h e r e  c 3 C ~  = ucr 

nl -2, n23n2 +3 and n 3 n  -1) wi! readily see that 

. Lcoking a t  the inverse process (nl + 

3 3  



so that the net number of ions entering l eve l  2 is  - 

Similarlywe have 

and 

= f233 Using an obvious generalization, we see that f o r  t h e  case mf 

which is an m + 1 spin process, we have 

I 
where u c r  must now be computed f o r  an m + l  spin process. 

Now we are read; t o  investigate the poss ib i l i ty  of a harmonically 

pumped maser. 

For a f irst  case let us consider t h e  energy level s i tua t ion  

shown i n  Figure 6 where m f  = fa. We can write 
23 



I 
I 
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I 

using Equation 'ES, we can rewrite the above as 

We can simplify Equation 83 as follows. In the  region where h f w q  

Thus, for example, we have, t o  f i r s t  order i n  the small quantit ies,  

W h e r e  w e  have used Equation 79. Now 

Using Equations 71 and 92,  we have 

thus 
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Hence, using the  high temperature approxbxt ion ,  we see that when the 

difference between two level populations i s  not involved tie can replace 

n. by N/L 
1 

If we wish t o  use tha scheme s h o w  i n  Figure 6 t o  obtain maser 

action where the  sQnal frequency is higher than the pump frequency, 

we w i l l  want t o  aF@y radiofrequency pmp power a t  f 

Thus l e t t i n g  Aij 2 9 - nj where j > i, we then have, in t h e  steady 

s ta te ,  

so that 5.  23 

There has not been, t o  the authors knowledge, any experimental 

or theoret ical  work which would enable us t o  evaluate re l iab ly  the 

various spin-latt ice relaxation constants 

Equation 96. A t  the present s b g e  of our knowledge, we can do little 

more than t o  hazard a guess a t  their relative magnitudes. W e  do know 

that, in general, at, +ldKjif 'c f k 
last statement, we w i l l  make t he  approximation that a l l  the Qtj 5 are 

equal. 

which appear in 

and J 4 . In  sp i t e  of this 
t 

We do this, i n  the l ight of the fac t  t h a t  we cannot evaluate 
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the  i n d i v i d u l  w<<S, i n  o r f k r t o  put t h e  solut ion of the r a t e  

@quations i n  a p a t i c u l a r l y  simple form showing exp l i c i t l y  the 

dependence of the various popdat ion differences upon t h e  physically 

s ignif icant  parameter ~ c r / ~ ' j .  
# J  

Making t he  assumption that a l l  the Mij's are equal and 

denoting th is  value by KI;j we can then write 

ana 

where Lquat on 97 i s  derived from dcuation 96, Equation 98 canes from 

transfamikL the zquakion f o r  dm+ i n  the same way we transformed 

the Pquati i f o r  dhr 
4t 

@>uations f o r  a soluable s e t  of three s imltaneous l i nea r  equations 

from whi .? TP car, extract  thc quaxi t ie , .  A,, , A , d  6,- . 
ax 

aiid -kyatinn 99 is an identity.  T h e s e b e e  

S o l l i n g  t k c  equation yields 
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8 
where &j=NL-IUj 
l a t ions  a t  thermal equilibrium, and 

the degree of saturation of the 1-4 t rans i t ion  due t o  i t s  harmonic 

coupling with the  externally pmped 2-3 transit ion.  

; the  difference of the two l eve l  popu- 
is a parameter which measures 

In order t o  have a maser operate a t  the frequency f13, f o r  

example, we must have A,,/&~Lo . we see that, for given values 

of m and ucr /kl'i 

f, (- f l j )  

11 , the  maximum ra t48  of the s i g n a l  frequency 

) w i l l  occur when t o  the applied pump frequency fp(= f 23 
&,=O We h o w  t ha t  the pract ical  maximum of the f /f r a t i o  S P  

but, f o r  cmpari t ive purposes, it is useful t o  compute the r a t i o  a t  

A,>=. 0 . Thus, f o r  the present case, the greatest  possible 

P 
value of fs / f  is 



has i ts  greatest  value 
( 1  

AS a function of WCrlcJij, 
0 8  

when aCr/h&j= ob . In thkcase ,  Equation 102 shows tha t  F.0 

hence there is complete cross saturation. We then have 

( 8  
We see that f o r  f i n i t e  values of w,,Iw;j the available 

Th i s  corresponds t o  value of f /f is reduced *om the  maximum. 

incomplete cross saturation. 
S P  

We can see th is  more clear ly  as we 

rewrite Equation 103 i n  terms of the saturat ion parameter ) thus 

get t ing 

Thus, f o r  a given value of m, incomplete cross saturation reduces 

the effect ive value of mad  thus reduces the available fs/f ra t io .  
P 

Since Irk( , we see that i s  is theoret ical ly  possible t o  operate 

a maser using harmonic cross saturation with a s ignal  frequency greater 

than the punp frequency. 

enough, we could get any desired fs/f ra t io .  However, as we have seen  

i n  Chapter 11, %r is a function of the order of t h e  cross relaxation 

process and, i n  the paramagnetic case a t  least ,  the  higher the order 

of a spin i3rocess, the less l ike ly  it becomes. We r e c a l l  from the  

last chapter that, putting numerical values in to  the admittedly rough 

Naively we would say that, by mak-hg m 1a11-g~ 

P 

48 
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Qcr(m+t) 

magnitude less than Qcvbj). This point will be taken up l a t e r  i n  

conjunction with sane experimental data. 

is at l ea s t  one, and more l ike ly  two, orders of 

We note that all of t h e  above relat ions and comments are equally 

applicableto f, =: f24 The case a t  hand, mf = f and the pump 
23 1L 

at f23, is called by Arams 5 , the symrr,etrical case because f, / fp is 

the same f o r  both the possible signal frequencies f and fZlr. 13 
5 What Arams ca l l s  t h e  anti-symmetric case is shown i n  Figure 7. 

Here mfu s f2b and the frequency of the pump source is fU. The 

solution of the relevant rate equations yield 

In t h i s  case, the  maximum possible f /f r a t io s  are 
S P  

t 

i ' i  
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and 

We see that using the  f t rans i t ion  i n  the anti-synrmetric case 
34 

as our signal frequency, we can get, forthe same values of m and 

UCV / fdii t l  
a higher value of fs / f than f o r  e i the r  of the  P 

possible signal frequencies i n  the symmetric case. 

If we wish t o  operate a maser using e i the r  of the schemes j u s t  

discussed, or f o r  that matter any maser, we must m a k e  sure that there 

are no interfer ing cross relaxation process i n  the region of interest. 

As an example of t he  e f fec ts  of interfer ing processes, consider the  

symmetric case where we have the addi t ional  cross relaxation process - 

pf, z = 624 T h i s  will add the (l inearized) term ~CT-(P)X I O  

[-pA,a+Aa) t o  the r a t e  equations.%hus the interfering process 

tends t o  make both dl2 and approach zero. When we r e c a l l  that 



fo r  the symmetric case A,=O andhjq-$ 0 

ef fec t  of the ?ftzZ fag p o c e s s  is t o  make - a l l  of the various 

population differences approach o r  eqbla l t  o zero. 

we see t h a t  t h e  net 

The only way out 

of t h i s  d i f f icu l ty  is t o  chocse an operating such tha t  a l l  potenti- 

ally interfering processes a re  e i the r  absent or  of vzry low intensity.  

Recalling the statement that cross relaxation processes a re  s ignif icant  

only i n  the r eg ion  where %<% 1 .( 3 , we see t h a t  we can, 

quantitatively,  ignore a l l  those kterfer.in;rJ processes whose mac.ni- 

tude SQttlq@t5tht condition =%? I because in these cases the TZI Qij  
e f fec t s  of spin-latt ice relaxation w 4 1 1  be the  doninant pYffects. 

The abo\= inequality is called the  i so la t ion  condition by Eicknell 4 . 
It is  more stringent than appears a t  f i rs t  glance because of the 

f i n i t e  linewidth of cross r e h a t 5 o n  processes. Thus processes which, 

a t  our operating point, arc- non-energy conservinc up t o  around 1 I'mc 

may Tossibly not s F t i s Q -  the  isolat ion condition. It i s  thus -3ossible 

that i n  a crystal  which hay many Fotsnt ia l  operntin.; points sui tzble  

from the  standpoints of s ignal  f:yuency, f /f rz t io ,  Qxr/Qi 
r a t b  ett., there r n a ~  u e i l  be only 2 few, one o r  even none that are 

i S P  

sui table  when interfer in:  cross r e h a t i o n  processes a re  taken i n t o  

account. A similar statanent hold; f o r  conventior_al three l eve l  

mas;rs. 

given t rans i t ion  whcther a mser r r i t h  f 

However, as shown i n  3.duation 105, f o r  a given crys ta l  and a 

nuch Lreater than f 
S P 

can 
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be made depends c r i t i c a l l y  uFon the  s a k r a t f o n  parameter. For  t h i s  

reason and because of the lack of any exis t ing d a t a  on u;i and qp 
an experimental investigation was carried out  for the measurement 

* .  

of cross saturation effects in ruby. This investigation is 

described i n  the next chapter. Obviously*t is t r u e  w i t h  respect 

t o  ruby does not necessarily apply t o  other c rys ta l s  but the experi- 

mental data w i l l  give us an idee of what values of 5 can be expected. 
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In  order t o  gain some idea of the possibi l i ty  of  building a 

millimeter maser d evice u t i l i z ing  harmonic cross saturation, we 

attempted to  measure the effect  i n  ruby a t  centimeter wavelengths. 

Among the reasons f o r  using ruby are tha t  it is  eas i ly  obtainable, 

its e n e r a  levels are well h o r n  and that  the r e su l t s  obtained w i l l  

also be character is t ic  of emerald, a material sui table  f o r  millimeter 

wavelength masers, which is  quite similar t o  ruby except f o r  having 

a zero field s p l i t t i n g  of 53.6 Kmc. which i s  L.66 times the  11.5 Kmc. 

s p l i t t i n g  of mby. 

by the  ava i l i b i l i t y  of the cmponents. 

The  operational frequency range w a s  d ic ta ted 

The first s tep  i n  the experimental process is t o  choose th 

lower pump frequency and then t o  construct a t rans i t ion  map showing 

%c the pump frequency and its fLrst  f e w  harmonics as a function of 

, t he  angle between 'IDc and the c-axis of the crystal .  8 A 

portion of  such a map is  shown i n  Figure 8. 

the harmonic t r ans i t i on  curves with the pump t r ans i t i on  curve serves 

t o  locate the various possible operating points at  which w e  can 

measure the  moss saturation e f fec t  usin? our apparatus. 

The intersections of 

54 

I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 
r 



I' 

6 

F 
Y 

4 

3 

2 
0 IO 20 30 40 50 *60 70 80 90 

e 

Fig. 8. 

55 



Figure 9 shows a schematic diagram of the experimental setup. 

We see that the  setup consists essent ia l ly  of two simple c rys ta l  

video paramagnetic resonance spectrometers, one a t  X-band, 11-12 Kmc, 

with provision f o r  harmonic mixing of the two signals so as t o  

enable u s  t o campare t h e  frequency of t h s  V-band signal. t o  the 

frequency of the th i rd  harmonic of the X-band signal. For our  

harmonic mixer we used a standard X-band crystal and mount and 

t h i s  combination gave excellent results.  

i l l u s t r a t ed  i n  Figme 10. 

cavity, the dimensions of  th? cavity a r e  such that it i s  above 

cutoff f o r  V-band and beyond cutoff f o r  X-band. 

spacer and the rubj disk in place, f lush against the top of t he  

cavity, X-band above cutoff propagation is allowed within the 

volume occupied by the dielectric-ruby cylinder while only 

evanescent modes w i l l  be found outside t h i s  region. 

T h e  microwave cavity is 

With no dielectric material  inside the 

With the d i e l ec t r i c  

Thus, unless 

the moveable plun2er, which tunes tk V-band resonance frequency, 

is extremely close t o  the dielectr ic ,  there w i l l  be no change in 

the X-band cavity resonance frequency while the V-band cavity 

resonance frequency i s  being changed. The X-band cavity resonance 

frequency is fixed by the dimensions 2nd the d i e l ec t r i c  constant 

of the dielectric-ruby cylinder a d  i s  therefore not tuneable. 

This l a t t e r  is no hardship since a l l  we need a t  X-band is  one well  

defined reasonably high Q cavity resonance somewhere between 11 

and 12 Kmc. 

by, Ff necessary, changinc; the height of the d ie lec t r ic  spacer. 

I n  practice we can always get a t  l e a s t  one such resfinance 

56 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



. 

-1 
V - X  Transition I 

- - - - - - - - - - - - -  

W a vemeter Wavemeter 

Cavity 

Fig. 9 .  

57 



Coupling Slots 

/ - - - -  
/ \ Tuning 

F i g .  10. 

58 



. 

The measurement procedure i s  a5 follorm, 'de first set the X-band 

frequency, with the klystron i n  thz C.W. mode, t o  t4he center of the 

X-band cavity resonance, Then with both klystrons i n  the caw. mode, 

we feed sorm X-band and V-band sifnal power in to  t k  hannonic mixer, 

tune the V-band frequency u n t i l  we get a zero-Seat with the t h i r d  

harmonic of the X-band frequency md tune the V-band wavemeter t o  

this frequency and the  X-bmd wavemeter t o  the  X-bmd frequency. 

We then switch both klysxons t o  the 3.m. node arid, using ths 

wavemeter pips as mafrkers, center both cavity resonances in the 

respective klystron modes. 

that we can see simultaneous X-band and V-band paramagnetic resonance 

N ~ J  thz magnetic f i e l d  is adjusted so 

I 
I 
1 
I 
I 
I 
1 
1 
I 

on our oscil l iscope (s )  at tb desired operating point, A dual beam 

oscil l iscope is highly desireable f o r t h i s  work although it i s  

possible t o  use two single beam oscilliscopes. Yext, with the 

magnetic field off the parmagnetic re-onance Faint, u e  read off 

the distance Q=Q+-pu 

we have moved both wavemeter pips oct of the picture. 

Then L= must measure tk height b h'nich i s  the height of thc mode a t  

the desired 0perzti.n;- frequency in the absence of a cavi ty  resonance 

at t h a t  frequency. I n  the cas€ of t he  X-band, we do  this by placing 

the wavemeter pip at a convenient wint on the shoulder 02 t he  mode, 

far both cavity dips,  xik king sure that 

(see Figure 1 l a )  . 

(see Figure Ilb), shorting the rcavegaide as close t o the to? of t h s  

dewar as possible, adding enough attenuation t o  the l i n e  t o  bring the 
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marker nip back t o  i ts  original and then rneazufng the  distance b 

(figure lo'cl). 

Normally, all that has t o  be done t o  neasure b f o r  t k . 2  V-band node 

is t o  move the tuning p l a y e r  s o  tht no c o i t j -  re5ononce canbe  

seen w h e r e  on the cavity mode. 

the V-band cavity is hi@y : ulti-moded and hence thers  w i l l  be 

marry resonances close together, the above procedure is  not feasible  

v ld  then we measure b i n  the sane ;;ey as Ire do i n  the X-band caze. 

*om these two pieces of data, a e H - r c s d  b, we c a ~  c o r ~ u t e ,  in the 

manner s h a m  below, p m  , t h e  cavity coup1in;- coefficient i n  the 

absence of paramagnetic resonmce . 

Then r e b a r  the a??aratus lx the  r\revfous s ta te .  

Sonstimes, due t o  the f a c t  that 

* 

Then, reestablishing kke condition o l  paramagstic re: onance 

and keeping thz V-band power level low enougl; so asto  caxs r o  sdf- 

szturation of the V-bmd t r m s i t f o n  (it must be the s a m  pmer level 

at which we measured t'he a and b descrijed above) an5 the  X-band 

parer l e t e l  a t  the detzctor c m s t m t  by means of  a cox;enszting 

attenuator in front  of the X-band detector, we proceed t o  measure 

and a as a f a c t i o n  of X-band y v e r  s t a r t i n g  a t  a 101.7 enough v 

X-band parer level s o  tha t  no seE-nzturation of the X-bmd t r v l s i t i o n  

is discernable in the  first measurement. 

ra ted measurement. 

T h i s  is called the unsatu- 

Ve continie the: rmasurements u n t i l  the X-band 

* This assumes that the len$h of  waveguide between the top of the 
dewar and the cavity itself' cm- be neglected, which it c a  be. 
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t rans i t ion  is completely self-saturated o r  a n  increase i n  X-band 

power causes no fur ther  lncreese -h the  V-band cross saturr t ion,  

whichever comes f i rs t .  lie then return t o  t he  j n i t i a . 1  conditions 

and. s t a r t  i n  again making neasurzcients only t h i s  time tre change 

the  V-band frequency t o  fv; 3fg*AI , where A I is ths  smallest 

convenient frequency change we can rnalce . 
we shift t o  a frequency Lncrement A, where IAzI >I bo f 
t o  an increment IA31 >I A,( 
measurements out t o  values of 

or until the value of 

saturated becomes s ta t ionary o r  beeins t o  decrease. 

After t hese measurements 

, then 

etc .  ir;e should continue t o  make 

of the ordei- of  - + 400 Inc or s o  

with the  X-band t r ans i t i on  cor;ipletely 

In  t h i s  way we 

can f ind the rough lines'wpe of t he  process, since over these small 

changes i n  E: 

Q C r / Q i j  

alone, since in thc  far wings 

about the  value of  k)cr i t s e l f .  

and 8 we c 3 tzke c/;i t o  be constant; t he  value of 
3c 

i t he  degree of cross sa"vxt,ion do t o  spin- la t t ice  e f f ec t s  

~ C V ~ O  j ant! hence something 

Tdeal-ly, those a r e  the things -. e 

should f ind  out by puttin,: the  data in to  the comytat ion method 

described below. In  practice, various problems arose i n  our  par t icu lar  

experjmcnt which prevented us frm getting good quantitative data 

concernine: ~ c r  (OL )) These Froblems a re discussed irmcdiately 

f o l l m i n g  ths cmputation method. 

Computation Iiethod 

For any microwave cavity we have 
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where Q is t h e  t o t a l  unloaded Q of the cavity, Qc is the unloaded 

Q of the cavi ty  in the  absence of paramagnetic resonance absorption 

and includes the  OMC losses due t o  the f i n i t e  conductivity of t he  

w a l l s  and of t h e  d i e l ec t r i c  nedia inside the  cavity etc. and f& is 
the magnetic Q rqhich takes 5nto r.ccount only t h e  losses due t o  

paramagnetic resonance absorption. 

0 

Xs can rewrite Equation 111 as 

The c m i t y  coupling coeff ic lent ,p  

a f e w  very unusual cases which w e  need not consider here, 

can be m i t t e n  as, in a l l  but 

3-33] p = Qb/Qrwt 
where Qext is external Q of the cavity system. Combining Squations 112 

and 113 gives 

In the absence of paramagnetic resonance we have 

Thus 



Denoting by the subscript u the case where paramagnetic fesonance 

absorption is present but there is no saturation of the t rans i t ion  

whatsoever, and by the  subscript s the case where there  is evidence 

of saturation, we have 

The magnetic Q of  a t ransi t ion is proportional t o  the  population 

difference between the levels  involved i n  the  t ransi t ion.  

completely unsaturated case, the population difference involved is 

In the 

just the t h e m 1  equilibrium pol)ulation difference, &‘j , (using 

the  notation introduced i n  Chapter III),,,is denoted by Aij  
and )I\ +he ssturWtc4 case 

Thus 
we get 

where  

NOW 

is the saturation parameter a l s o  introduced i n  Chapter 111. 

where  

terminal in tk case that the cavity is undercoupled. Since these 

terminals are not accessible, we use an indirect  method o f  measur- 

ing Irl. 

is t he ref lect ion coefficient measured a t  t h e  cavity 

The poEer incident on ei ther  one of the detectors in the 

setup is 
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where Tglvs is tk powzr output of th2 klystron tube, &, is an 
attenuation fac tor  which inclu'es a l l  the  losses i n  th2 microwave 

l i ne  between the klystron and the cavity and Q(r includes a l l  

losses between tk cavity and t h e  detector. 

microwave cavlty of the type we have hers ac ts  as a short  c i rcu i t  

terminating the l ine.  --SI*/. Iftm keep the 

OTf resonance, a 

'L 
~n t h i s  case I 

power l eve l  incident on the c rys ta l  detector low enough, we can 

assume square l a w  detection i.e., the  output voltage is proportional 

t o  the incident power. We remember t h a t  distances measured on the 

oscilloscope screen are actually voltages. Hence 

since the attenuation factors  .re constarts and we taks care t o  keep 

PNLysconstant. Thus we see that,  using the experimentally measured 

quant i t ies  a and b, it is a re la t ivs ly  simple matter t o  calculatenand b 
hnce, using the resu l t s  of chapter LII, oCp/wij . T& accuracy of 

the final resu l t  may not be too p a t  even i f  the experimental con- 

di t ions are perfect because the closer the t rans i t ion  comes t o  being 

completely saturated, the closer Qr approaches 80 and Equation 118 

shans that we are then subtrscting two nearly equal quantit ies 

. nei ther  of which is known t o  g r e a t  precision because of the d i f f i cu l ty  

in getting readings of more than two s ignif icant  figures f ram an 
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oscillocope. 

than the f.m. systemwe did use thus enabling us t o  u t i l i z e  a more 

precise readout system such as a meter or a chart recorder, but, 

because of the time and expense involved, it was f e l t  that t o  

build the nccess,?ry a.f.c. system for the C.W. setup woulcl be 

fool ish as there would be no f’urther use f o r  them once t h i s  

project was completed. 

It woul2 have been be t ie r  to  use a C-Ti-. system ra ther  

Kuch more serious problams arose which made the accuracy of t he  

calculation a moot point, 

quantitative data. 

runs f o r  u s  to  be able t o  take a set of data at a par t icular  frequency 

and t o  then inmediately take another set of data a t  the same Trequency 

and t o  have the two s e t s  of data ar;ree t o  within a few per c a t .  

convenient checkpoint t o  use f o r  checking the compatibility of two 

s e t s  of data is the v a h e  of a when the magnetic f fe ld  is off para- 

magnetic resonance, 

a l so  noticed that during the a?p ’ icat ion of a large amount of X-band 

pump power, such as is necessary t o  ensure complete saturat ion of 

the X-band transit ion,  the problem was aggravated by a change i n  the  

V-band cavity resonance frequency. 

naturally precluded aqy measurements. 

One ;<as the non-repeatability of the 

It was possible on only a very few experimental 

A 

This value changed f r m  run t o  run. It was 

This change in cavity frequency 

The shif t ing of a from run t o  rm was never cleared up but, 

although it was a serious handicap, it did not make the  experiment 

impossible because there weretimes xhen t h i s  s h i f t  ditJ nct oca I*. 
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A plausible explanation for  the shift of the V-band resonance 

frequency w i t h  X-band power is that the X-band power 'wiled off the 

helium inside the  cavity. The peak power available from our tube, 

an X-13 klystron, wzs of the order of 9omW. and of this about 3Qnv 

o r  so y88 the 

cause boiling. Such power was needed because of  the s ize  of the 

sample which was i n  turn necessitated by the Lack of sens i t i v i ty  

of the V-band spectrometer. 

tried operating below the lambda point of the helium but, t o  no 

avail. We a l s o  t r i ed  t o  keep liquid helium aut of the cavity. 

Since the  cavity could not be sealed off due t o  the hole necessay  

f o r  the plunger shaft In the  bottan wall of thc: cavity, we did t h i s  

power into the cavity and t h i s  i s  suf f ic ien t  t o  

In an e f f o r t  to  curve the problem we 

by turning the X-band puwer up t o  maximum and keeping it there  unti l  

no fur ther  change in the V-band resonance frequency T-jas observed and 

then on a heater element, which was a resis tor ,  located i n  the space 

between the bo t tm s i d e  of the plunger and the  b o t t m  side of the 

cavity. 

w h i c h  in turn were in  d i r ec t  contact w i t h  the  l iquid helium, there 

should have been no great rise in the temperature of the  sample 

particularly as t he  heater p r e r  w a s  keot a t  the minimum l eve l  which 

would keep the V-band resonance constant i n  frequency. 

uas only partially successful but it did enable us t o  get one piece 

of quantitative data. 

Since the ruby was i n  d i rec t  contact with the cavity w a l l s  

This technique 



Our data vas taken OR the three spin cross relaxation process 

. There we found that the maxir;lum degree of cross 2 f  

saturation was about ‘p+=ai).rhis corresponds t o ,  making us of F 12 = f 2 4  

Equation 108, &vlW;i = 27.6 and t o  a maximum f s / fp  ratio of, 

using Equation 107, % 
should not be taken too l i t e r a l l y  but they a re  i n  the same ballpclrk 

with figures from other workers and tend t o  cast doubt upon the  

poss ib i l i ty  of obtaining; f s / fp  r s t i o s  s i g i f i c a n t l y  higher than one . 

= 1 s  . These f i v e s  ) = pJhTa +f AZO 

J.4 ob B i e i n e U .  examined th case of 3433“ $ ,3 Ih*Kruby  a t  4.2OK 

and found no inversion whatsoever, but dms not give a value for $ , 
He measured 5 f o r  the  p-ocess 3f~3~fb4i”  t he  sama c rys t a l  and got 

e= ,QG but he did not look f o r  any inverston because of  h i s  use 

of the cr i ter ion that a useful s i tua t ion  f o r  mazer act ion must have 

, b m  which is equivalent t o  saying tha t ,  allowin,r €or his 
C LJ LI 

chimed l$ experimental error,  3 must be 

theoretically,  zero. With €30 there is, of course, no diminnation 

of t h e  fs/fp r a t i o  and t h i s  i s  h is  rezson f o r  using the  cri terion. 

I n  any event, F =  .06 wmld y ie ld  

This was the smallest value of p 
measured . 

-01 exp<rimentally o r  

and w!!! m 3 1 ,  
2 J h - b  NsI 
f o r  any f o u r  s p i ~  precess 5e 

Mims and XcGeel5 found t h a t  T 2 1  f o r  various m = 2 processes 

h .l$ ruby ranged from .2 t o  1.3 x 

1 x log3 sec. 

Assuming that  Pace e t  a1  

sec. with most of the order of 

They also found that at k.2%, T .1 Col- m sec. 1 
16 are  correct, T1o( 1/T and thus a t  l.S°K, 

-_ 
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1 T1 & 28C m sec. For a el$ concentrztion T1 = 280 x 103sec= 

280 f o r  m = 2 processes i n  

.I$ mby at 1.S;Ofi. 

Xncre2ding the concentration of the paramagnetic ion w i l l  

increase the value of W 

able concentration. This &.it is g i w n  by the concentration a t  

but thei-e is an upper l imi t  t o  the use- 
cr 

which strong cross relaxation effects  a r e  observed between a l l  

pairs of t r sns i t ions  irrespective of the energy Soalance.  

menta’lly it is  observed that, in  ruby, such a general cross 

relaxation e f f ec t  occurs at concentrations above Oels$ 

Experi- 

a, 15 
When we rmembr that in an m + 1 s p i n  process is less l ike ly  

than an m spin process by a t  least an order of mawitude, w e  

readi ly  see that masers with value of fs / fp  much greater than one 

are not possible in ruby at lecst  nor d o  they seem very fe7sible 

in other substances unless Gne can f ind  a substance which has an 

extremely long spin-latt ice relaxation time, a t  least an order of 

magnitude or,better yet, two greater than that of ruby, wi th  a 

camparable cross relaxation time. Thus, a t  the present time, it 

would seex t h a t  g r ? - t e s t  use of cross relaxation 

at millimeter a s  well as at a l l  other i~mslen$hs will be t o  aid  in the 

maser devices 
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